Hot Deformation Behavior of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe Alloy in α + β Field

نویسندگان

  • Zhaoxin Du
  • Shulong Xiao
  • Jingshun Liu
  • Shufeng Lv
  • Lijuan Xu
  • Yuyong Chen
چکیده

The deformation behavior of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe high strength β titanium alloy is systematically investigated by isothermal compression in α + β field with the deformation temperatures ranging from 1003 K to 1078 K, the strain rates ranging from 0.001 s to 1 s and the height reduction is around 50%. Essentially, the flow stress-strain curve of isothermal compression in α + β field exhibits a flow softening feature when the strain rate is higher than 0.1 s as while it exhibits a steady-state feature as the strain rate is lower than 0.1 s. The peak stress increases with a decrease in deformation temperature and the increase of strain rate. The activation energy for deformation in α + β field was calculated and the average activation energy of 271.1 kJ/mol. The microstructure observation reveals that the isothermal deformation in the α + β field of the alloy is mainly controlled by the dynamic recovery mechanism accompanied with the secondary dynamic recrystallizitation of β phase. The α phase shows an obvious pinning effect for the movement of dislocations. During deformation, the α phase was elongated and fragmented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow Behavior of SP-700 Titanium Alloy During Hot Tensile Deformation in α+β and β Phase Regions

In this paper, in order to study the flow behavior and elongation of as-cast ingots of SP-700 titanium alloy, hot tensile test was done in α/β dual phase and β single phase regions using strain rate of 0.1 s-1. Results showed that the hot tensile behavior of SP-700 in the α/β dual phase region (700-900 ºC) was different from the β single phase one (950-1100 ºC) due to the nature of alpha and be...

متن کامل

Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure

This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10-3 s-1 to 1 s-1) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamell...

متن کامل

The Formation of Strong {100} Texture by Dynamic Strain-Induced Boundary Migration in Hot Compressed Ti-5Al-5Mo-5V-1Cr-1Fe Alloy

The microstructure and texture evolution of Ti-5Al-5Mo-5V-1Cr-Fe alloy during hot compression were investigated by the electron backscatter diffraction technique. The results reveal that two main texture components containing <100> and <111> fiber textures form after the hot compression. The fraction of each component is mainly controlled by deformation and strain rate. Dynamic strain-induced b...

متن کامل

Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys

To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized sh...

متن کامل

Microstructural Evaluation of Ti-6AL-4V Alloy during Hot Deformation

Among the titanium alloys, Ti-6Al-4V is the most widely used. In the present work, the uniaxial hot compressive behavior of Ti-6Al-4V has been investigated under constant strain rates. A series of dilatometery experiments were carried out to determine the transformation temperatures at different cooling rates. Specimens were homogenized at 1050 °C for 10 minutes followed by fast cooling to dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015